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We investigate the accuracy of various numerical methods used to simulate the time
evolution of partial differential equations for functions valued inS2. We use three
different methods to describe the fields: a unit length vector, the polar angles, and a
complex field. We derive some nonlinear finite difference operators and we compare
the different methods used in simulations. For the time integration, we employ both
the 4th order Runge–Kutta and the leapfrog methods.c© 1998 Academic Press

1. INTRODUCTION

Classical field theories valued in non-flat manifolds arise very often in the description
of various phenomena in different areas of physics. In elementary particle physics, for
example, the Yang Mills theories, the Skyrme model, and the monopoles, all involve fields
valued in non-Abelian Lie groups (typicallySU(n)). The fact that the fields are valued
in topologically non-trivial manifolds leads to the existence of non-trivial stable solutions
which, in turn, are good candidates to describe elementary particles.

In solid states physics, ferro-magnetic materials and liquid crystals are often described by
a unit vector which corresponds to, respectively, the local orientation of the magnetisation
or the orientation of molecules in liquid crystals. The space of configurations is then a
two dimensional sphere (ferro-magnets) or a projective spaceRP2 when the vector has a
direction but no orientation (some liquid crystals).

Cosmological strings are also described by nonlinear sigma models which take values in
a 2 dimensional sphere. Other applications involve the quantum Hall effect and solitonic
structures in ferromagnets and antiferromagnets,etc., which all involve, in their mathemat-
ical description, topologically non-trivial curved manifolds.

Most of such models possess extended structure solutions whose dynamics are respon-
sible for the physical phenomena. To study dynamics one has to solve the classical equa-
tions of motion, which, due to the topological non-triviality of the target manifold, are
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non-linear. So, choosing some coordinate variables on the target manifold, the problem
reduces to having to solve a set of coupled nonlinear partial differential equations, often
also with algebraic constraints. Moreover, sometimes one trades the constraints for having
to deal with fields which can (and do) take arbitrarily large values or possess coordinate
singularities.

Luckily, in most cases the manifold can be described in several different but equivalent
ways. This can be exploited when solving the equations. As the equations can, virtually
never, be solved analytically we have to solve them numerically. This is particularly true
when we are interested in time dependent problems.

As we will see, the different descriptions often have very different properties; moreover,
the number of functions used can depend on the description used. This has important con-
sequences for the amount of memory and time required to solve the equations numerically.

Consider, for example, a model valued in the two dimensional sphereS2. One can describe
it by a 3 component real vector fieldφ= (φ1, φ2, φ3) normalised to 1:

φ · φ = 1. (1.1)

The evolution of the model will then be described by 3 equations (one for each component of
φ) together with (1.1). The advantage of this formulation is that each function (component
of φ) takes values in the interval [−1, 1]. The main problem, however, is to make sure that
the evolving fields satisfy the constraint. Notice, that one of the consequences of (1.1) is

φ · ∂φ
∂u
= 0, (1.2)

whereu is any of the space time coordinatest, x, . . . , together with further conditions
which follow from (1.2) by its differentiation.

To avoid the problem of constraints one can parametrise the sphere by introducing a set
of polar angles on it,e.g., θ andϕ related toφ by

φ1 = cos(θ) cos(ϕ)

φ2 = cos(θ) sin(ϕ)

φ3 = sin(θ).

This description of the model involves only 2 fields without any algebraic constraint. How-
ever, this description has its drawback in that this formulation has a coordinate singularity,
as forθ = 0, ϕ is not defined. This, in turn, implies that, in general, the equations of the
model are singular in the fields, which can make the numerical methods unstable.

A third natural way to describe a sphere involves a conformal projection of the sphere
onto the complex plane. Definingw as such a complex field we can take

w = φ1+ iφ3

1− φ3
. (1.3)

Again, this description involves only 2 real functions with no algebraic constraint. This
time, however, the problem is that the fieldw is infinite at the north pole of the sphere
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(φ3= 1). Moreover, for values ofφ with φ3 close to 1,w becomes very large, which makes
most numerical methods difficult to implement.

The most common manifolds encountered in classical field theories are Riemannian
symmetric spaces, and in particular, the spheresSn (Sigma models, cosmic strings), unitary
groupsSU(N) (Monopoles, Yang Mills fields, fields of the Skyrme model), as well as the
projective planesCPn (sigma models) andRPn (liquid crystals). Each of them can be
described by a real or a complex matrix satisfying a set of algebraic constraints [1], but can
also be described by a set of parameters equal to the dimension of the manifold.

Over the past few years, we have performed many numerical simulations studying various
extended structures in many (2+ 1) dimensional models using both relativistic and Landau–
Lifschitz type dynamics. Most of our studies involved fields valued inS2. Sometimes the
equations of motion involved only the simplestσ model terms, at other times additional
terms were added (such as Skyrme and various potential terms). In our studies we used
various formulations of our models, always paying special attention to the reliability of
the derived results. Of course, all numerical methods involve numerical errors; so in our
simulations we have always tried to reduce such errors to a level at which we can trust the
general features of the studied phenomena. So, for some phenomena (like the 90◦ scattering
[2]), relatively small lattices have already been sufficient, for some others (like the rate of
soliton “shrinking” in the pureS2 model [3]) we needed large lattices and sophisticated
multi-grid methods.

Having gained experience from some simulations we have decided to compare our meth-
ods (for our types of fields) to decide which methods to use in future, and how efficient
they are (both from the computer memory point of view and the time required for a given
simulation). In each case we make sure that errors are very small, but then there is no
point in using a method which reduces a negligible error even further at a price of length-
ening significantly the CPU time of the simulation. At the same time, if the CPU time or
the memory requirements are not increased there is no “harm” in using a more accurate
method. In fact, for (2+ 1) dimensional model simulations, given the present state of com-
puter technology, most methods work quite well and produce reliable results in reasonable
times. Some simulations of (3+ 1) dimensional models have also been performed [4] but
they require much more computing power hence the need to find accurate and economical
methods of numerical integration. We thus hope that the results of this paper, in addition
to providing us with an insight into the accuracy of simulations in (2+ 1) dimensions, will
also be useful when thinking of simulating the dynamics of extended structures in (3+ 1)
dimensions.

Thus, in this paper we compare different methods of studying the dynamics of soliton-
like structures of the (2+ 1) dimensionalS2 sigma model. We use 3 different formulations
of the model. For each formulation, we tackle the problems created by the field description
and develop a stable method to solve the equations satisfied by the fields. We compare
the results of all methods, focusing our attention on the accuracy of the results and the
computing requirements.

2. THE S2 SIGMA MODEL

We will concentrate our attention on the numerical investigations of the extended struc-
tures and their scattering properties in the (2+ 1) dimensional sigma model. This model is
defined on the two dimensional plane (locally parametrised byx andy) and the field takes
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its value in the sphereS2. The model itself is defined by the Lagrangian,

L =
∫

dx dy

(
1

2

(
∂φ

∂t
· ∂φ
∂t
− ∂φ
∂x
· ∂φ
∂x
− ∂φ
∂y
· ∂φ
∂y

)
− V(φ)

− K 2

2

[∣∣∣∣∂φ∂x

∣∣∣∣2∣∣∣∣∂φ∂y

∣∣∣∣2− ∣∣∣∣∂φ∂t

∣∣∣∣2
(∣∣∣∣∂φ∂x

∣∣∣∣2+ ∣∣∣∣∂φ∂y

∣∣∣∣2
)
−
(
∂φ

∂x
· ∂φ
∂y

)2

+
(
∂φ

∂t
· ∂φ
∂x

)2

+
(
∂φ

∂t
· ∂φ
∂y

)2
])
, (2.1)

whereφ satisfiesφ · φ= 1. The first term of (2.1) describes the pureS2 sigma model
(K = 0,V = 0). Its extended static solutions are unstable (they blow up in a finite time) [2,
3]. For this reason, to stabilise these solutions, the last two terms were introduced [5–7].
The term proportional toK 2 is called the Skyrme term andV is a potential term. Their
combined effect is to set the scale and so to fix the size of the static solitonic solutions thus
preventing the solitons from expanding or shrinking.

From (2.1) we can derive the following expression for the total energy of a given field
configuration:

E =
∫

dx dy

{(
∂φ

∂t
· ∂φ
∂t
+ ∂φ
∂x
· ∂φ
∂x
+ ∂φ
∂y
· ∂φ
∂y

)
+ V(φ)+ K 2

2

[∣∣∣∣∂φ∂x

∣∣∣∣2∣∣∣∣∂φ∂y

∣∣∣∣2

−
(
∂φ

∂x
· ∂φ
∂y

)2

+
∣∣∣∣∂φ∂t

∣∣∣∣2(∂φ∂x
· ∂φ
∂x
+ ∂φ
∂y
· ∂φ
∂y

)
−
(
∂φ

∂t
· ∂φ
∂x

)2

−
(
∂φ

∂t
· ∂φ
∂y

)2
]}
.

(2.2)

The equations of motion of the model can easily be derived using the Euler Lagrange
equations where, to take the constraintφ · φ= 1 into account, we can use a Lagrange
multiplier.

Eliminating this multiplier we find that the equation of motion is given by

∂2φ

∂t2
= B

{
(1− P)φi i − φ|φt |2− (1− P)∇φV(φ)+ K 2

[−φ|φt |2(φi · φi )

+ (1− P)
(
2φi t (φi · φt )+ φi i (φ j · φ j )− φi j (φi · φ j )− |φt |2(φi · φi )

)
+φt [(φt · φi i )− (φi · φi t )] + φi (φ j · φi j )− φi (φi · φ j j )− φi (φt · φi t )

]}
(2.3)

taken together with the constraintφ ·φ= 1. In (2.3) we have used the notationfu= ∂ f
∂u , fi i =

∂2 f
∂x2 + ∂2 f

∂y2 , fi gi = ∂ f
∂x

∂g
∂x + ∂ f

∂y
∂g
∂y , and fi gj hi j = ∂ f

∂x
∂g
∂x

∂2h
∂x2 + ∂ f

∂y
∂g
∂y
∂2h
∂y2 + ∂ f

∂y
∂g
∂x

∂2h
∂y∂x + ∂ f

∂x
∂g
∂y

∂2h
∂x∂y .

Moreover,P=φφt andB is the 3× 3 matrix given by

B = 1

D

(
[1+ G]1+ (1+ G)K 2

(
∂φ

∂x

∂φt

∂x
+ ∂φ
∂y

∂φt

∂y

)

+ K 4

(
∂φ

∂x
× ∂φ
∂y

)(
∂φ

∂x
× ∂φ
∂y

)t
)

D = (1+ G)2+ (1+ G)K 4

(∣∣∣∣∂φ∂x

∣∣∣∣2 ∣∣∣∣∂φ∂y

∣∣∣∣2− (∂φ∂x
· ∂φ
∂y

)2
)
,

with G= K 2|φi |2.
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FIG. 1. S2 soliton energy density:w= (x + iy).

Before concentrating on the methods used to solve these equations, let us say a few words
about the known solutions of (2.3). Static, finite energy, solutions of the pureS2 model
(K =V = 0) are all known [8, 9]. They are given by holomorphic or anti-holomorphic
functions:w= f (x + iy) or w= f (x − iy). To have finite energy solutions the function
f must be a rational function and the energy is then proportional to the highest degree in
the denominator or the numerator. An important property of these solutions is that they are
topologically stable. This means that the solutions cannot decay and can be thus considered
as models of solitons. The simplest static solution is given by

w = λ(x + iy − a), (2.4)

whereλ anda are 2 arbitrary complex parameters. Rather than looking at the shape of the
functionw itself it is more appropriate to look at the energy density for the solution. Figure 1
shows this density for (2.4). It can be shown thata in (2.4) fixes the position of the soliton.
On the other hand,λ fixes its size. As (2.4) has the same total energy (the volume under the
surface in Fig. 1) for all values ofλ anda it is easy to check that whenλ is large the soliton
is spiky and well localised, and whenλ is small, the soliton is flat and spread out.

In this paper we will describe the simulations of the model (2.1) for 2 different potentials:
VH (φ)= θ

2(1+ φ3)
4 andVB(φ)= θ(1− φ3), whereφ3 denotes the third component of the

vectorφ. The first model has harmonic static solutions, hence theH subscript for the
potential. This model was studied in detail in [5] and its simplest static solution is given by
w= θ1/4

K 1/2 (x + iy − a). The second model was studied in [6, 7] and is usually referred to as
the baby Skyrme model. Its static solutions are not known analytically but their construction
(for one soliton or many solitons on top of each other) reduces to having to solve an ordinary
differential equation whose solutions decay exponentially at infinity [6].

Before we discuss the numerical integration of these models let us present their description
in terms of polar angles on the sphere and the stereographic projection of the sphere onto
the 2 dimensional plane.
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3. THE POLAR ANGLE FORMULATION

Instead of using a three component vector to describe the sphere we can use the polar
coordinates onS2. The advantage of such a description is that it involves two fields instead
of three but, on the other hand, we know that the equation of motion has coordinate sin-
gularities. To avoid the numerical problems that this generates we can use an idea from
differential geometry, namely to divide the sphere into regions and employ a different sys-
tem of coordinates (maps) on each region. Such maps would have no singularities in their
own domains and both of them can be extended to allow for an overlap between the two
domains.

Our potentials are functions ofφ3 only. This means that the models we are interested in
are invariant with respect to rotations around theφ3 axis. To preserve this symmetry in our
systems of coordinates we cut the sphere “vertically” into two overlapping bands parallel,
respectively, to the (φ1, φ3) and (φ2, φ3) planes and use, respectively, the pairs of angles
(θ1, ϕ1) and (θ2, ϕ2) with 0≤ θ1,2<π and 0≤ϕ1,2< 2π :

φ1 = cos(θ1)

φ2 = sin(θ1) cos(ϕ1) (3.1)

φ3 = sin(θ1) sin(ϕ1)

φ1 = −sin(θ2) cos(ϕ2)

φ2 = cos(θ2) (3.2)

φ3 = sin(θ2) sin(ϕ2).

When we want to use the two different maps on the same grid, we must be able to transform
the coordinates of any point from one map to the other. Assuming that the values of the
functions acos and asin lie in the range [0, π ] and [−π, π ], respectively, we can use the
following relations:

θ2 = acos(sin(θ1) cos(ϕ1))

θ1 = acos(−sin(θ2) cos(ϕ2))

ϕ2 = asin

(
sin(θ1) sin(ϕ1)

(1− sin2(θ1) cos2(ϕ1))1/2

)
, θ1 >

π

2

= π − asin

(
sin(θ1) sin(ϕ1)

(1− sin2(θ1) cos2(ϕ1))1/2

)
, θ1 <

π

2
(3.3)

ϕ1 = asin

(
sin(θ2) sin(ϕ1)

(1− sin2(θ2) cos2(ϕ2))1/2

)
, θ2 <

π

2

= π − asin

(
sin(θ2) sin(ϕ2)

(1− sin2(θ2) cos2(ϕ2))1/2

)
, θ2 >

π

2
.

The Lagrangian density can easily be computed using (2.1) and (3.1) or (3.2). It takes
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exactly the same form for the two maps,

L =
∫

dx dy

{
1

2

(
θ2

t − θ2
i

)+ sin2(θ)
(
ϕ2

t − ϕ2
i

))− V(θ, φ)

− K 2

2
sin2(θ)

(
θ2

t ϕ
2
i + ϕ2

t θ
2
i − ϕ2

i θ
2
j − 2θtϕtθiϕi + (θiϕi )

2
)}
, (3.4)

where forV we take one of the two potentials described before,

VH (θ, ϕ) = θ

2
(1+ sin(θ) sin(ϕ))4

VB(θ, ϕ) = θ(1− sin(θ) sin(ϕ)).

(3.5)

The energy is then given by

E =
∫

dx dy

{
1

2

((
θ2

t + θ2
i

)+ sin2(θ)
(
ϕ2

t + ϕ2
i

))+ V(θ, φ)

+ K 2

2
sin2(θ)

(
θ2

t ϕ
2
i + ϕ2

t θ
2
i + ϕ2

i θ
2
j − 2θtϕtθiϕi − (θiϕi )

2
)}
, (3.6)

and the equation of motion, again, takes the same form for the 2 maps,

θt t = 1

D

((
1+ K 2θ2

i

)
Fθ + K 2 sin2(θ)θiϕi Fϕ

)
ϕt t = 1

D

((
1+ K 2 sin2(θ)ϕ2

i

)
Fϕ + K 2θiϕi Fθ

)
,

(3.7)

where

D = (1+ K 2 sin2(θ)ϕ2
i

)(
1+ K 2θ2

i

)− K 4(θiϕi )
2 sin2(θ),

Fθ = θi i + sin(θ) cos(θ)
(
ϕ2

t − ϕ2
i

)− ∂V

∂θ
+ K 2 sin(θ) cos(θ)

[
θ2

i

(
ϕ2

j − ϕ2
t

)− θ2
t φ

2
i

− (θiϕi )
2
)+ 2θtϕtθiϕi

]+ K 2 sin2(θ)
[
θi i
(
ϕ2

j − ϕ2
t

)− ϕi i (θtϕt − θiϕi )+ ϕi j θi θ j

− θi j ϕiϕ j + 2θt iϕtϕi − ϕt i (θtϕi + θiϕt )
]
,

Fϕ = ϕi i − 2 cotg(θ)(θtϕt − θiϕi )− 1

sin2(θ)

∂V

∂ϕ
− K 2

[
θi i
(
θ jϕ j − θtϕ

2
t

)
+ϕi i

(
θ2

t − θ2
i

)− 2ϕt i θtθi + θt i (θtϕi + θiϕt )+ ϕi j θi θ j − θi j θiϕ j
]
.

4. THE CONFORMAL PROJECTION ONTO C2

Our third method involves projecting the sphere onto the complex plane using the confor-
mal projection (1.3). The field is then described by the complex fieldw. The only singularity
of w corresponds to the north pole of the sphere:φ3= 1. At this pointw becomes infinite.
We can forsee that this will lead to problems for the numerical integration as, close to this
value,w can become arbitrarily large making the numerical method unstable and unreli-
able. To avoid this problem, we can again use two different maps. This time we can takew

and it inverseu= 1/w for, respectively, the southern and the northern hemispheres ofS2.
Formally, the Lagrangian and the equation of motion are identical forw andu as long as
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we defineV(|u|2)=V(1/|w|2). We have

L =
∫

dx dy

{
2

(|wt |2− |wi |2
)

(1+ |w|2)2 − V(|w|2)− K 2

(1+ |w|2)4
(
8|wt |2|wi |2

− 4|wi |2|w j |2− 2(wt w̄i + wi w̄t )
2+ (wi w̄ j + w j w̄i )

2
)}
, (4.1)

E =
∫

dx dy

{
2

(|wt |2+ |wi |2
)

(1+ |w|2)2 + V(|w|2)+ K 2

(1+ |w|2)4
(
8|wt |2|wi |2

+ 4|wi |2|w j |2− 2(wt w̄i + wi w̄t )− (wi w̄ j + w j w̄i )
)}
, (4.2)

where

VH (|w|2) = θ

2

(
2|w|2

1+ |w|2
)4

,

(4.3)
VB(|w|2) = 2θ

1+ |w|2 .

The equation of motion is now given by

wt t = Fa− F̄ B

a2− |B|2 , (4.4)

where

a = 1+ 2K 2|wi |2
(1+ |w|2)2 ,

B = − 2K 2w2
i

(1+ |w|2)2 ,

F = wi i + 2
(
w2

t − w2
i

) w̄

1+ |w|2 +
4K 2w

(1+ |w|2)3
[
w̄2

i w
2
j − w̄2

t w
2
i − w̄2

t w
2
i − |wi |4

+ 2|wt |2|wi |2
]− 2K 2

(1+ |w|2)2
[
w̄i iw

2
j − w̄i iw

2
t + wi jwi w̄ j − wt i (wt w̄i + wi w̄t )

− w̄i jwiw j + 2w̄t iwtwi + wi i
(|wt |2− |w j |2

)]− w
2
(1+ |w|2)2 ∂V

∂|w|2 .

Next we will use the methods we have just described to solve (2.3) and to compare their
results. In each case, we have to solve a set of second order partial differential equations. To
perform the time integration of the equations we will use both the 4th order Runge–Kutta
and the leapfrog methods. We will compare both methods and will describe their advantages
and disadvantages. To evaluate the spatial derivatives we will use finite difference operators.
The equations we want to solve are nonlinear in the derivatives but they are invariant under
spatial rotations. To take advantage of this property we will introduce, what we will call, the
isotropic nonlinear finite difference operators. Then we will describe how one can reduce
the problems associated with the numerical integration of (2.3) and finally, we will compare
the results produced by the different methods.
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5. NONLINEAR FINITE DIFFERENCE OPERATORS

To evaluate the spatial derivatives we use finite difference operators. It is easy to note that
(2.1) is rotationally invariant and, as a consequence, all the nonlinear terms involving deriva-
tives in the equations of motion (2.3), (3.7), and (4.4), are of 3 different types: the Laplacian
1( f )= ∂2 f

∂x2+ ∂2 f
∂y2 , scalar products of gradientsfi gi = ∂ f

∂x
∂g
∂x+ ∂ f

∂y
∂g
∂y , and operators of the form

fi gj hi j where the sums overi and j are implicit. The simplest method to evaluate these ex-
pressions involves computing each derivative separately and then combining them together

to form the desired operator. For example, to evaluate the Laplacian, we can compute∂2 f
∂x2 and

∂2 f
∂y2 and then add them together. If we label each point of the two dimensional regular square
grid with 2 indices so thatf (x, y)= f (n,m), and calldx the distance between two adjacent
lattice points, we have∂

2 f
∂x2 (x, y)= 1/dx2( f (n+1,m)+ f (n−1,m)−2 f (n,m))+O(dx2)

and ∂2 f
∂y2 (x, y)= 1/dx2( f (n,m+ 1)+ f (n,m− 1)− 2 f (n,m))+ O(dx2) leading to the

well known 5 point Laplacian.
Having performed some simulations we have found that we cannot use the 5 point Lapla-

cian. The grid effects are strong and destroy the rotational symmetry of various quantities,
such as the energy or the topological charge densities. This, in turn, affects the evolution of
the solitons. The effects are small but non-negligible. So, we have to go beyond the 5 point
Laplacian. However, there are many finite difference operators which in the limit of small
lattice spacings converge to the Laplace operator. An obvious improvement on the 5 point
Laplacian will involve a 9 point one, i.e., a laplacian of the type

DLgen.9( f ) = (−(4a+ 4b) fi, j + a( fi+1, j + fi−1, j + fi, j+1+ fi, j−1)

+ b( fi+1, j+1+ fi−1, j+1+ fi+1, j−1+ fi−1, j−1))
1

(a+ 2b) dx2
(5.1)

for a reasonable choice ofa andb. By trial and error we have found thatb has to be a rea-
sonable fraction ofa (somewhere between 0.1 and 0.7). Of thesea= 4, b= 1 is particularly
convenient,i.e.,

DL9( f ) = (−20 fi, j + 4( fi+1, j + fi−1, j + fi, j+1+ fi, j−1)+ fi+1, j+1+ fi−1, j+1

+ fi+1, j−1+ fi−1, j−1)
1

6dx2
, (5.2)

as then its first correction term, like the Laplacian itself, is also invariant under rotations
(isotropic) and vanishes for harmonic functions:

DL9( f ) = 1( f )+ dx2

12
12( f )+ O(dx4).

So, up to the first correction term we see thatDL9( f )does not break the symmetries of (2.3).
Moreover, whenf is a harmonic function, like the static solution (2.4), the first correction
term vanishes.

Is it possible to derive nonlinear differential operators with similar properties for the other
2 types of operators we have to evaluate? To evaluate the scalar product of gradients the
simplest approach would involve evaluating the first derivatives∂ f

∂x and ∂ f
∂y , using say, the

symmetric difference operators and then using these results to calculate the scalar product.
However, instead of computing this operator along the lines of the lattice, we can also
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evaluate it along the diagonals or even better take a linear combination of the transverse
and diagonal operators with the appropriate coefficients.

Defining the diagonal coordinatesu= x+ y andv= x− y, and introducing the following
finite difference operators on the grid,

Dx f = 1

2dx
( f (n+ 1,m)− f (n− 1,m)),

Dy f = 1

2dx
( f (n,m+ 1)− f (n,m− 1)),

(5.3)

Du f = 1

4dx
( f (n+ 1,m+ 1)− f (n− 1,m− 1)),

Dv f = 1

4dx
( f (n+ 1,m− 1)− f (n− 1,m+ 1))

we find that a good choice corresponds to

DG( f, g) = 2

3
(Dx f Dxg+ Dy f Dyg+ Du f Dug+ Dv f Dvg)

= ∂ f

∂x

∂g

∂x
+ ∂ f

∂y

∂g

∂y
+ dx2( fx1gx + fy1gy + gx1 fx + gy1 fy)+ O(dx4)

which is isotropic and harmonic up to the second order indx.
For the third type of operators we can follow a similar method. First we define the second

order finite difference operators

Dxx f = 1

dx2
( f (n+ 1,m)+ f (n− 1,m)− 2 f (n,m)),

Dyy f = 1

dx2
( f (n,m+ 1)+ f (n,m− 1)− 2 f (n,m)),

Dxy f = 1

4dx2
( f (n+ 1,m+ 1)+ f (n− 1,m− 1)

− f (n+ 1,m− 1)− f (n− 1,m+ 1)), (5.4)

Duu f = 1

4dx2
( f (n+ 1,m+ 1)+ f (n− 1,m− 1)− 2 f (n,m)),

Dvv f = 1

4dx2
( f (n+ 1,m− 1)+ f (n− 1,m+ 1)− 2 f (n,m)),

Duv f = 1

4dx2
( f (n+ 1,m)+ f (n− 1,m)− f (n,m+ 1)− f (n,m− 1)).

and find that

DT( f, g, h) = 2

3
(Dx f DxgDxxh+ Dy f DygDyyh+ (Dx f Dyg+ Dy f Dxg)Dxyh

+ 2(Du f DugDuuh+ Dv f DvgDvvh+ (Du f Dvg+ Dv f Dug)Duvh))

= fi gj hi j + dx2

12
( fkgl hiikl + ( fxgy + fygx)hxyii )

+ dx2

6
( fi hi j gkk j + gi hi j fkk j).
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For this choice we see that the first correction term also vanishes for harmonic functions
but, this time, the extra term is not invariant under rotations.

6. IMPLEMENTING THE INTEGRATION METHODS

Usingφ

The easiest way to study the time evolution of extended structures of theS2 sigma model
involves using theφ formulation. This is because this formulation does not require the use
of different maps to describe the field. If we look at (2.3), we see that it is given by a set of
3 second order hyperbolic equations which can be solved as an initial value problem. For
the time evolution we have used the 4th order Runge–Kutta or the leapfrog methods. Both
are simple to implement and we will compare their relative accuracy. The main difficulty
with theφ formulation is to keep the length of the vectorφ equal to 1 (to satisfy (1.1)). If
we start with an initial conditionφ(t = 0) and ∂φ

∂t (t = 0) satisfying (1.1) and (1.2), we can
hope that the time integration procedure will preserve this property. In practice it nearly
does and after a few integration steps the normalisation of the field is still close to unity.
However, as the equation of motion holds only when theφ field is properly normalised
this small error quickly exponentiates and the numerical procedure becomes unreliable; in
practice ignoring the constraint introduces instability into the method and it does not take
long before (φ · φ) explodes. A simple solution of this problem is to normalise the fieldφ

to 1 and project∂φ
∂t onto the plane orthogonal toφ after every integration steps. This method

works reasonably well and was used in [5] and some other works [6, 7].
Another method involves keeping the Lagrange multiplier (which imposes the constraint

φ ·φ= 1) in the equation of motion and arranging for its effect to be such that the constraint
is satisfied. This corresponds to projecting the vectorφ onto the sphere but using a different
projection scheme.

As we will see, our method of dealing with the constraint can be improved further and
some of the methods we analyse here will give more accurate results. For some problems
the accuracy of the normalisation method is sufficient; some others will require the use of
our more sophisticated approaches.

To evaluate the spatial derivatives we can use finite difference operators, evaluating the
derivatives of each component ofφ independently. This simple approach has the disadvan-
tage that it ignores the relations that exist between the different components ofφ because
of (1.1). Indeed, one way to derive finite difference operators is to expand the fields in a
power series and match the obtained expressions with the values taken by the field on the
lattice. Thus we could put, for the field close to some lattice point,

9 = a+ bx+ cy+ dx2+ ey2+ f xy+ . . . ,

wherea, b, c, d, e, and f are vectors whose values are fixed by the value of the field at it and
some adjacent lattice points. Performing such a construction for each lattice point we see that
our fields are correctly normalised at each point of the lattice used for its construction, but
not in between them. Thus (1.1) and (1.2) are not satisfied everywhere in the plane. This can
be put right by definingφ=9/(9 ·9)1/2. Thenφ is correctly normalised everywhere and
all its derivatives can be expressed in terms of the derivatives of9 which can be evaluated
numerically using the expressions described in the previous sections.
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For example, to evaluate∂φ
∂u , we note that

∂φ

∂u
= 1

|9|
(

1− 99
t

|9|2
)
∂9

∂u
= 1

|9| (1− P)
∂9

∂u
,

whereP is the projector onto the one dimensional sub-space spanned by9. Then ∂9
∂u can

be evaluated using the appropriate finite difference operatorDu(9) and exploiting the fact
that at each lattice pointφ and9 take identical values we have

∂φ

∂u
= (1− φφt )Du(9) = (1− φφt )Du(φ). (6.1)

Similarly, for the second order derivatives operators, we can derive the following expression

∂2φ

∂u∂v
= Duvφ − Duφ(φ · Dvφ)− Dvφ(φ · Duφ)− φ[(Duφ · Dvφ)

+ (φ · Duvφ)− 3(φ · Duφ)(φ · Dvφ)]. (6.2)

This result can also be obtained by putting

∂2φ

∂u∂v
= Duvφ − αDuφ − βDvφ − γφ

and using

φ · ∂
2φ

∂u∂v
+ ∂φ
∂u
· ∂φ
∂v
= 0,

which follows from the normalisation ofφ, to derive the expressions forα, β, andγ .

Using the Polar Angles

When using the polar angles the main difficulty stems from having to use two different
maps to describe the field. To do this we have to store, at every lattice point, the values of
the fieldsθ andϕ (and their time derivatives) as well as the information as to which map is
used at this point (we can call them maps 1 and 2 and store the index of the map).

The finite difference operators that we use involve only the 8 nearest neighbours of a
given lattice point. To evaluate the finite difference operators at a given point on the lattice
we must make sure that the fields at these neighbouring points are expressed using the same
map as the map of the point in question. As the grid is scanned one lattice point after another
we make a copy of the fields for the 8 neighbouring points and convert them, if required, to
the map being used for the current lattice point. Then together with the field at the “central”
point, the 8 converted fields form a small 3× 3 subgrid which can be used to compute the
finite difference operators at this point.

Notice that the two maps will be used in two separate regions of the lattice, and that the
“conversion” between the two maps will have to be performed only in the neighbourhood
of the curve which separates the two regions. On the other hand, this border curve will
move with time and so the program has to check at each time step where on the grid the
“conversion” is required.
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There is a further problem that arises asϕ is defined modulo 2π . To compute the difference
between 2 values ofϕ we must take the value modulo 2π . Thus, for example, the difference
between 6.1 and 0.1 is 6.1− 2π − 0.1≈−0.28318 and not 6.

When the values of bothθ andϕ have been updated, during the time integration, one must
check that their new values are still inside the correct range and, if they are not, perform the
appropriate transformation. The most common cases of problems arise whenϕ becomes
larger than 2π or smaller than 0. We must then subtract or add, respectively, 2π to the
original value.

After each time integration step we must also check, at each lattice point, thatπ/2≤
θ ≤ 3π/2. When this condition is not satisfied we must use (3.1) or (3.2) to transform the
field from one map to the other.

The 4th order Runge–Kutta method involves 4 successive sub-steps and we must make
sure that the same map is used in all substeps for a given lattice point. It is compulsory to
use the same map in all 4 sub-steps as the last part of the Runge–Kutta method involves
adding a linear combination of the 4 terms computed in each substep. This only makes
sense if they have all been evaluated in the same map. We can thus only change the map
after each time step.

For the leapfrog method there is a further problem. The integration procedure can be
summarised as

f (t + dt/2) = f (t − dt/2)+ dt ∗ F(t), (6.3)

where f (t) represents the fields at timet andF(t), the right hand side of the equation, is
evaluated with the fields at timet . As, at some points of the grid,f (t) and f (t −dt/2)may
use different maps we must convertf (t−dt/2) to the same map asf (t) before we evaluate
(6.3) (we could also convertf (t) before computingF(t) but this is less appropriate).

Using the Conformal Projection

For the description in terms of the complex fieldw we introduce two different maps,
w and 1/w, and at each point we use the map which satisfies the condition|w|2≤ 1. The
implementation is similar to the one described for polar angles. Again, at each lattice point,
we have to build a 3× 3 local grid and convert the eight neighbouring points to the same map.

7. NUMERICAL COMPARISONS

We have performed many comparisons of different methods of integration applied to
different models; in particular, we have looked at

—theS2 model
—the holomorphic Skyrme model
—the baby Skyrme model.

For each of these models we have used 6 different methods of simulation. As we will
refer to them inside the tables describing our results we have chosen a short name, given in
boldface in the list below:

—Phi field (Phi).
—Phi field with curvature corrections (Phi-Cor).
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—W field (W).
—W field with nonlinear finite difference operators (W-NLFDO ).
—Polar angles field (Polar).
—Polar angles field with nonlinear finite difference operators (Polar-NLFDO ).

We have also compared the 4th order Runge–Kutta and the leapfrog methods. For all
the simulations presented here we have used fixed boundary conditions. This was to make
the comparison between the different methods easier. Otherwise, we usually put some
absorption at the edge of the grid to absorb radiation.

We present our results by looking at each model separately and comparing the different
methods of integration of the fields of this model. The tests we have performed in each case
are quite similar. First we looked at the field of one static soliton. Its analytical form is known
in the case of theS2 model and the holomorphic Skyrme model. For the baby Skyrme model
we have computed it numerically, by solving the appropriate ordinary differential equation.
The field of such a static soliton should be a solution of the equation of motion. However, in
numerical simulations it does not solve it exactly; hence we can study its evolution during
a certain length of time and then measure how much the configuration has changed during
this time.

Another simple test consists in boosting the soliton. As the models are all Lorentz co-
variant, if F(x, y) is a static solution of the equation, then so is the boosted solution
F(γ (x − vt), y) whereγ = 1/(1− v2)1/2.

Finally, we can perform a scattering of solitons. However, this time we do not have any
analytical solutions with which to compare the fields obtained in our numerical simulations.

To quantify the quality of our integration we can look at several different parameters.
First of all, we can monitor the conservation of energy and/or the topological charge. It is
worth pointing out at this stage that we have discretised the equation of motion and the
energy density separately. This implies that our discretised energy (i.e., our approximation
to the total energy) is not a conserved quantity for our set of discrete equations. Of course,
as it approximates the conserved energy its variation with time is small. Thus, when we
look at the time dependence of this energy we do not monitor just the quality of the time
integration for our system of ODEs but, rather, evaluate the overall quality of integration
for our PDE.

As mentioned before, when we use the vectorφ, we have to normalise this vector, at
least, after every few steps of time integration. As we scan the grid to normaliseφ we
find it useful to compute the maximum ofδ|φ|2= ||φ|2 − 1| (Maxgrid (δ|φ|2)), over the
grid and to monitor its evolution as a function of time. Our experience has taught us that
when this quantity becomes too large this is usually a sign that something is wrong with
the integration. We can only compute Maxgrid (δ|φ|2), for theφ field so this quantity is not
very useful when comparing the different methods of integration. It is nevertheless a useful
quantity to monitor in theφ formulation when the fields change a lot, so we will give an
example of it when we analyse a scattering of solitons.

In some cases we know the exact expression for the fieldφe(x, y, t) at the timet . We
can thus measure the quality of integration by calculating the difference between the exact
configurationφe and the one obtained numericallyφn. For this we can use the expression

1φ =
∫

dx dy|φe− φn|. (7.1)
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As the vectorφ lies on a sphere, ifφe andφn are completely uncorrelated, then|φe− φn|2
equals 2, on average, and1φ is given by the area over which the integration is performed
(multiplied by

√
2).

As we are only interested in the field close to the Skyrmion we should compare1φ to
the area covered by the Skyrmion. In the example we have chosen and with our choice of
parameters, the radius of our Skyrmion is about 5 units; thus1φ should be compared to
115. We can also scan the grid and look at the largest difference between the two fields
Maxδ φ=Maxgrid |φe−φn|. This will give us an upper bound on the error in the evaluation
of the field.

When we do not know the exact solution, we can compare the fields by evaluating1φ

for any two fields obtained by two different methods. In practice, we will choose two
methods which we believe to give the most accurate answers and then compare all the field
configurations to the fields obtained with these two methods.

The S2 Model

As we know the analytic form of the static solution of (2.3), the first test we have performed
involved taking such a solution and checking to what extent it satisfied also the numerical
equation. We have already mentioned that the soliton solutions of this model are unstable
and that the smallest perturbation can make them shrink or expand. This implies that small
perturbations, caused by numerical errors, are likely to make the soliton expand or blow
up unless the method of integration is extremely accurate. Integrating the time evolution of
this model is thus very difficult because of the genuine instability of the solitons.

What we have found is that the most accurate method of integrating theS2 model is to
use the complex fieldw together with the nonlinear finite difference operators. When we
used the 9 point Laplacian (5.2) and the fieldφ without the curvature corrections the soliton
blew up and with the other methods, the soliton oscillated in size. Table I summarises our
observations. The first column presents the error in the conservation of energy. The second
one shows the amplitude of oscillation, as a fraction of the total size, of the maximum
of the energy density of the soliton. The last column gives the maximum kinetic energy
of the soliton. This last quantity measures the inaccuracy of our scheme as this energy is
entirely due to the fact that our initial condition does not satisfy our discretised equation
and, as a result, the soliton oscillates and produces some waves. The energy of the soliton,
in our units, is 1. We do not present the results of the comparison of the integrated field

TABLE I

Static S2 Soliton on a 201× 201 Grid, Using the 4th Order

Runge–Kutta Method

Method 1E Oscillation Kin. En.

Phi-Cor 6.5 10−4 0.19 6 10−5

W 10−5 3.2 10−4 10−6

W-NLFDO 3 10−10 6.5 10−6 5 10−14

Polar 6.5 10−5 5 10−2 2.5 10−6

Polar-NLFDO 1.7 10−4 6.5 10−2 4.5 10−6

Note. E= 1.
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with the exact solution as this depends too much on the value of the time at which the
comparison is made. Let us just mention that for the W-NLFDO method,1φ= 6.7 10−5

and that the largest difference on the grid between the integrated field and the exact solution
was Maxδφ= 1.3 10−6, thus showing the amazing accuracy of this method. In Table I we
do not include any values for the Phi methods as in these cases the soliton blew up.

We see from Table I that the W-NLFDO is by far the most accurate method to integrate
this model, followed by the W method and the two methods which use the polar angles.
When we used the vectorφ with corrections the results did improve and the soliton did not
blow up, but this method was still substantialy less accurate than the other four.

Given the fact that theS2 model is so intricate to integrate, we will not compare the
different methods of integration for a boosted soliton and leave this comparison for the
Skyrme models.

The Holomorphic Skyrme Model

To evaluate the accuracy of the integration of the holomorphic Skyrme model we have
chosen the following parameter values,K 2= θ = 0.2 and we have performed the simulations
on a 201× 201 grid ranging from−10 to 10 in both directions and on a 401× 401 grid
ranging from−20 to 20 (hencedx= dy= 0.1). The static solution is then simply given by
w= x + iy.

In our first test we have taken the static solution at rest at the centre of the grid as the
initial condition and have integrated the equation up tot = 100; we have then compared the
final configuration with the initial one. The results are given in Table II.

Once again, W-NLFDO is the most accurate while Phi the least accurate method. W and
Polar-NLFDO are second best while Phi-Cor and Polar are very comparable. Note also that
the error varies between 2% (Phi) and 0.001% (W-NLFDO).

For the second test, we have placed the soliton on the grid starting atx= (−1, 0) and
boosted it across the grid with the speedv= 0.2. After integrating the equation up tot = 10
the final position of the soliton was found to be, as expected, quite close tox= (0, 1). It
was not exactly at this value—but this was due to the tail of the soliton (which is cut off by
the finite size of the grids used in the numerical procedures). This inacurracy has little to
do with the method; it depends much more on the size of the lattice. To assess the quality
of the integration, we have evaluated the difference between the analytical expression for
the displaced Skyrmion and the fields obtained numerically. The results are presented in

TABLE II

Static Holomorphic Skyrmion on a 201× 201 Grid Using the 4th Order

Runge–Kutta Method

Method 1φ Max δφ 1E

Phi 1.2 0.017 5 10−5

Phi-Cor 0.14 0.0025 2 10−5

W 0.035 0.001 10−5

W-NLFDO 0.00014 2.8 10−6 10−8

Polar 0.22 0.0042 10−5

Polar-NLFDO 0.05 0.0013 7 10−6

Note. E= 1.125.
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TABLE III

Boosted Holomorphic Skyrmion on a 401× 401 Grid Using the 4th Order

Runge–Kutta Method

Method 1φ Max δφ 1E 1Wφ Max δWφ 1φφ Maxδ8φ

Phi 7.9 0.03 1.8 10−4 2.3 0.031 2.05 0.03
Phi-Cor 5.8 0.01 7 10−5 0.25 0.0036 — —
W 5.6 0.01 2.3 10−5 0.038 0.0011 0.27 0.0036
W-NLFDO 5.6 0.01 8 10−7 — — 0.25 0.0036
Polar 6.3 0.036 7.5 10−4 0.72 0.036 0.55 0.035
Polar-NLFDO 5.9 0.022 3.5 10−4 0.33 0.022 0.33 0.021

Note. E= 1.149.

Table III. All the obtained results appear to be very comparable. However, this is, again,
mainly due to the fact that we have performed our integration on a finite grid and that the tail
of the soliton, which extends beyond the edge of the grid, has been slowing down the soliton
progressively and as a result, the soliton did not make it all the way to its final position.
Thus we are comparing two field configurations which are slightly displaced with respect
to each other.

To perform a more meaningful comparison of the different methods we have decided to
compute the relative differences between the fields obtained in different numerical integra-
tions. We have taken as the reference fields the fields obtained with the W-NLFDO and the
Phi-Cor methods and labelled1φ and Maxδφ with indicesW andφ, respectively, when
the differences were evaluated with respect to these fields.

Looking at the table we see that Phi gives the least accurate results while, this time,
W, W-NLFDO, and Phi-Cor produce the most accurate results and that the two methods
involving the polar angles are comparable in terms of their accuracy. When we compare the
different fields after integration, the maximum error varies between 1% and 4%.

The Baby Skyrme Model

To study the accuracy of the integration of the baby Skyrme model we have chosen
the following values of the parameters:K 2= 1, θ = 0.1. Moreover, we have performed the
simulations on a 201× 201 grid ranging from−10 to 10 in both directions or on a 401× 401
grid ranging from−20 to 20 (hencedx= dy= 0.1). The static solutions were obtained by
solving an ordinary differential equation [6].

In our first test we have taken as our initial condition the static solution at rest at the
centre of the grid and have integrated the equation up tot = 100. Then, for the second test,
we have placed the soliton on the grid atx= (−1, 0) and boosted it across the grid with the
speedv= 0.2. The comparison of the results obtained in different methods is summarised
in Tables IV and V.

Looking at the tables we observe that, for this model, the difference between the different
methods is far less striking and it is not clear how to identify the best one. Using one of the
W methods looks like the best choice for a moving Skyrmion while these methods seem to
be the least accurate ones for the static fields. In any case, the differences between all the
6 methods are relatively small as their accuracies differ by only a factor of 3 or 4 and the
differences between the methods are always below 1%.
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TABLE IV

Static Baby Skyrmion on a 201× 201 Grid Using the 4th Order

Runge–Kutta Method

Method 1φ Maxδφ 1E

Phi 0.18 0.0035 9 10−6

Phi-Cor 0.29 0.0017 10−5

W 0.57 0.0054 2 10−5

W-NLFDO 0.59 0.0044 10−5

Polar 0.39 0.0039 5 10−6

Polar-NLFDO 0.44 0.005 8 10−6

Note. E= 1.565.

Finally we have compared the results of simulating the scattering of two baby Skyrmions.
We have looked at a head-on collision between two Skyrmions located initially atx=−10
andx= 10 each sent towards the centre of the grid with the speedv= 0.5. We have used a
401× 401 grid extending from−20 in 20 in both directions.

In all simulations the two Skyrmions moved towards each other, collided just before
t = 20, then overlapped and came out of their interaction region at 90 degrees along they
axis and with a speed at about half of its initial value (such a collision is highly non-elastic).

As there are 2 Skyrmions, the “reference” value of1φ is 230. We see from Table VI that
in the worst case we have an overall accuracy of about 10−4 and that the largest difference
between 2 vectors on the grid is 0.002. The least accurate method seems to be Phi without
the curvature corrections, while both the polar angle methods are quite accurate. Phi-Cor
and W-NLFDO have a large overall difference between them despite the fact that the largest
difference between the two vectors is only 0.0065. This suggests that the difference is, most
probably, due to an overall displacement between the 2 fields.

We have mentioned before that, when usingφ, it is useful to look at how much the fieldφ
must be normalised after each time integration step. In Fig. 2 we show maxgrid δ|φ| obtained
with the Polar-NLFDO method for a 2 Skyrmion scattering. The peak just beforet = 20
corresponds to the time when the 2 solitons overlap,i.e., “are on top of each other.” In
some simulations, maxgrid δ|φ| can suddenly change by a few orders of magnitudes. This is
usually a sign that the grid is too coarse for the simulation and that a finer mesh should be
used.

TABLE V

Boosted Baby Skyrmion on a 401× 401 Grid Using the 4th Order Runge–Kutta Method

Method 1φ Max δφ 1E 1Wφ Max δWφ 1φφ Max δ8φ

Phi 1.37 5.9 10−3 3 10−4 0.77 0.0092 0.4 0.005
Phi-Cor 1.6 2.2 10−3 3 10−5 0.37 0.0042 — —
W 1.92 4.1 10−3 1.3 10−5 0.057 0.001 0.34 0.004
W-NLFDO 1.96 3.9 10−4 1.5 10−5 — — 0.37 0.0042
Polar 1.7 5 10−3 3 10−4 0.32 0.0047 0.23 0.0062
Polar-NLFDO 1.73 3 10−3 3 10−5 0.24 0.0025 0.18 0.0039

Note. E= 1.598.
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TABLE VI

Two Baby Skyrmions on a 401× 401 Grid Using the 4th Order Runge–Kutta Method

Method 1E 1Wφ Max δWφ 1φφ Max δ8φ

Phi 6 10−3 8.6 0.044 5.7 0.04
Phi-Cor 9 10−3 3.3 0.0065 — —
W 9 10−3 1.9 0.023 3.6 0.025
W-NLFDO 1.2 10−2 — — 3.3 0.0065
Polar 6 10−3 1.4 0.0038 2.3 0.0046
Polar-NLFDO 6 10−3 1.5 0.006 2.1 0.0067

Note. E= 3.616.

Further Tests

In the last sections we have given results of simulations obtained using the 4th order
Runge–Kutta method for the time integration. We have also repeated some of these simu-
lations using the leapfrog method and have seen essentially no difference in terms of the
final results and accuracy except in the case of the polar angle methods. In this last case the
leapfrog method appeared to be unstable and the simulations have always blown up.

We have also repeated some of the simulations for the two Skyrme models using grids
with 4 times as many points—keeping the “physical” dimension of the lattice unchanged
and so decreasingdx anddt by a factor of 2. Overall, the effects have been the same for
most methods of integration: the errors decreased by a factor of about 20 and this was
observed for both the 4th order Runge–Kutta method and the leapfrog method (with a few
exceptions for the leapfrog method).

When boosting solitons on a lattice, it is natural to make them travel along one of the
lattice’s main axis. This may bias the results of the simulations. To check that we do not

FIG. 2. Baby Skyrmion scattering: maxgrid δ|φ| for the Phi-Cor method.
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TABLE VII

Integration Time (s) for 100 Time Steps

on a 201× 201 Grid

Method RK4 Leapfrog

Phi 133 70
Phi-Cor 139 73
W 145 72.5
W-NLFDO 159 80
Polar 280 —
Polar-NLFDO 302 —

have such a bias we have boosted our Skyrmions along different directions and have found
no difference for either of the Skyrme models. We also verified that the 90 degree scattering
had taken place in all these cases.

We should also say a few words about the resources needed to implement the various
methods of our tests. When using the real vectorφ we need 50% more storage space than
with the complex fieldw or the polar angles. When using multiple maps, we also need an
extra array to store a number telling us which map is used, but this can be done using an array
of characters (or even a single bit per lattice site) and thus it requires a negligible amount of
extra computer memory. To implement the Runge–Kutta method we need 3 copies of the
fields while the leapfrog method requires only 2 copies. Thus the most economical method,
in terms of storage requirement, is the leapfrog method for thew fields. This combination
requires only just over 50% of the memory needed to use the Runge–Kutta with theφ field.

In terms of speed, the leapfrog method is, as expected, about 2 times faster than the
Runge–Kutta method. Using multi-map fields also is slower than using theφ fields. This is
because the extra time required for checking and converting the fields between the different
maps is larger than the time gained by having to deal with only 2 fields instead of 3.

In Table VII we report the time required to perform 100 integration steps on a 201×201
grid for the Skyrme models. To increase the reliability of our work, we had implemented
in a single program the various methods of integration for the 3 models we analysed. Our
program thus had to perform many context switches and unecessarily large loops which
could affect the speed of the code. Using a single program for any specific method would
most probably result in a better performance than the ones given below. Our tests were
performed on a sparc Ultra 2 300 Mhz fitted with 1 GB of RAM.

8. FURTHER METHODS

There are other methods of integrating the time evolution of models valued on the sphere
S2 or some other manifolds. One of the first numerical integrations [10] of the (2+ 1)
dimensionalS2σ model was performed by first discretising the action of the model and
then deriving the equation of motion from it. This method has some advantages like giving
an expression for the total energy that is automaticaly conserved. Unfortunately it is more
difficult to apply this method to models containing higher order terms like the Skyrme term.

We have also tested other methods of integration. First of all, we have used a 25 point
Laplacian for theS2 model using the real vectorφ. In this case the Laplacian is proportional
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to the expression

1φ(i, j ) ∼ {a[φ(i + 1, j + 1)+ φ(i − 1, j − 1)+ φ(i + 1, j − 1)+ φ(i − 1, j + 1)]

+ b[φ(i + 1, j )+ φ(i − 1, j )+ φ(i, j + 1)+ φ(i, j − 1)]

+ c[φ(i + 2, j )+ φ(i − 2, j )+ φ(i, j − 2)+ φ(i, j + 2)]

+ d[φ(i + 1, j + 2)+ φ(i + 1, j − 2)+ φ(i − 1, j + 2)+ φ(i − 1, j − 2)

+φ(i + 2, j + 1)+ φ(i + 2, j − 1)+ φ(i − 2, j + 1)+ φ(i − 2, j − 1)]

+ e[φ(i + 2, j + 2)+ φ(i − 2, j + 2)+ φ(i + 2, j − 2)+ φ(i − 2, j − 2)]

− 4(a+ b+ c+ 2d + e)φ(i, j )} 1

dx2
. (8.1)

Different choices of the parametersa, . . . ,e give different Laplacians. Note that our
9 point Laplacian corresponds toc= d= e= 0. A convenient choice is provided by taking
a= 68/27, b=−58/81, c=−8/27, d= 10/81, and e=−11/648 for, as shown by
Rutenberg [11], such a choice of “lattice” Laplacian has a vanishingk4 term in its Fourier
transform and, in addition, itsk6 andk8 average to zero. We have performed some tests with
this choice of Laplacian and have found that, indeed, it introduced very little perturbation
of a one Skyrmion field; hence a soliton of the pureS2 model changed its size very little
and so did not blow up in any of our simulations. However, the price to be paid for the use
of this Laplacian is the time needed for the simulation to be completed (when compared
with the simulations which used a nine point Laplacian, the 25 point ones required about
2.5 times more computer time to perform the same integration).

All simulations reported in this paper involved square, equally spaced, grids with
dx= dy. We have also looked at irregular, in general rectangular, grids and a hexagonal
grid. In the first case, to eliminate the effects of the boundaries we mappedR2 into a regular
grid in (z1, z2) by z1= αx

1+α|x| (for some choice ofα and with(−1< z1< 1) and similarily
with y andz2. This has eliminated most of the effects of the boundaries but compensated
for it by significantly decreasing the accuracy of the numerical method everywhere in the
grid. The gain was overcompensated by the loss. Our view has become that to reduce the
effects of the waves reflecting from the boundaries it is better to introduce some absorption
at the boundaries rather than modify the grid itself. The results of the use of hexagonal grids
were very much as expected; the results were more accurate but not sufficiently so to justify
the larger memory requirements (assuming the samedx more points are needed to cover
the same “physical” area).

To increase the accuracy, we have also implemented fixed multi-grid methods. Here the
idea involves embedding grids of different mesh sizes located, in an onion like fashion, at
the centre of the grid. The embedded grids all have the same number of points but they have
mesh sizesdx half the size of the grid they are embedded into. So if the outer lattice extends
from−L to L (in both thex andy directions) with mesh sizedx0= L/(N − 1), whereN
is the number of points along each direction of the grid, then the second grid extends from
−L/2 to L/2 with a mesh sizedx1= dx0/2. In general then’s grid extends from−L/(2n)

to L/(2n) and has a mesh sizedxn= dx1/(2n).
Integrating the different meshes separately and merging them after each integration step

we have been able to use the same array for the two extra temporary fields needed for the
Runge–Kutta method. This means that by using 2 embedded grids we could reduce the
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mesh sizedx by a factor of two (at the centre of the grid) and use only 4/3 of the memory
needed for the original grid, while using a single grid with similarly reduceddx everywhere
on the grid this time, would require 4 times as much memory. For 3 embedded grids, the
mesh size at the centre is reduced by a factor of 4 with only 5/3 increase in the memory
requirement, while a single grid with the samedx would raise the memory needs by a factor
of 16.

We have used the multigrid methods to study the scattering of solitons as well as the
blowing up of a singleS2 soliton [3]. The motivation for reducing the mesh size at the
centre of the grid comes from the fact that in most cases we are interested in a scattering
which takes place at the centre of the grid. Thus the fields change the most at the centre of
the grid and it is there that we need higher accuracy. The multigrid method can also be used
to increase the size of the lattice so that the waves, usually generated during the scattering,
take longer to reach the edge of the grid and so have a smaller impact on the scattering
itself. Waves can usually be absorbed on the edges of the grid, but the absorption is never
perfect and there is always a small amount of reflection taking place. Using a larger grid
reduces such effects.

We have not implemented our multigrid methods with the leapfrog method. In this case
the gain in memory requirement is less important. The main reason for this is that in the
leapfrog method we must keep 2 copies of the fields everywhere on the grid and so we are
unable to use the same extra temporary fields for different subgrids. To embedn subgrids
we would thus needn times the memory required for a single grid.

The spectral method has also been applied, with success, by P. Sutcliffe [12] for the baby
Skyrme model using theφ field formulation. His results are promising but because of the
global nature of the spectral methods, it is not clear if they can be used for multi-map fields.

9. CONCLUSIONS

It is clear that solving partial differential equations on a non-flat manifold requires the
development of special methods to take into account the curvature of the manifold. We
have looked at three different methods of performing a numerical integration of sigma
models valued inS2; they involved describing the fields of the model by, respectively, a unit
length real vector, the polar angles on the sphere, or a complex field corresponding to the
stereographic projection ofS2 onto the complex plane.

When we use the complex field or the polar angle formulations it is advisable to use two
different maps to avoid coordinates singularities. Each point on the lattice is described by one
map and when the derivatives of the field, at this point, are calculated the adjacent points may
have to be converted to this map. Moreover, the map may vary as the fields evolve with time.
Thus to implement such methods the code must perform the necessary bookkeeping to en-
sure that any computation involving fields at different points is performed in a specific map.

Our tests have shown that all our simulations, which involved 3 different descriptions of
the sphere and which used finite difference operators for spatial derivatives, give reliable
results. However, when more accurate results are required each of our methods can be
improved; when using the unit length vectorφ, the numerical errors can be decreased by
modifying the various differential operators appearing in the equations to take into account
the fact that the 3 components of the vector are not independent. For the polar angle and
the complex fields we have derived some nonlinear finite difference differential operators
which, when used, also improve the quality of the integration.
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We have also compared the leapfrog and the 4th order Runge–Kutta methods and found
no significant difference between the two, except that the leapfrog method seemed unstable
when used with the polar angles.
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